

© Henry Stewart Publications 2398-5100 (2022) Vol. 6, 2 141–147 Cyber Security: A Peer-Reviewed Journal 141

Browser isolation as an enterprise
security control
Received (in revised form): 1st August, 2022

Henry Harrison
Co-founder and Chief Scientist, Garrison, UK

Henry Harrison is co-founder and chief scientist at Garrison, developers of a hardware-based browser
isolation platform which is supplied both on-premises and as a cloud-based service to mainstream
enterprise, and is also supplied as a cross-domain solution to government customers in the Five Eyes and
allied nations. Prior to founding Garrison, Henry was Technical Director for Cyber Security at BAE Systems
following BAE’s acquisition of Detica plc. Henry has a physics degree from Oxford University and an MSc
in electronic engineering from Surrey University and holds multiple patents for security technologies.

Garrison, 117 Waterloo Road, London, SE1 8UL, UK

Tel: +44 (0)7736 675484; E-mail: henry.harrison@garrison.com

Abstract Browser isolation is a category of security control that allows users of sensitive
endpoint devices to access potentially risky web content without putting their devices
at risk of compromise by malware. A key use case is to provide web access from the
privileged access workstations that should be used by those with elevated system
privileges such as systems administrators. If endpoints for such users are compromised,
then the attacker may gain the ‘keys to the kingdom’, making the risk of direct access to
unknown and untrusted websites too high. Browser isolation, however, may also be used
as a control to protect endpoints for broader classes of users to prevent attacks such as
phishing e-mails containing malicious uniform resource locators (URLs). In order to form a
useful control, browser isolation must deliver a significant ‘step up’ in security compared
to the extensive web security already typically deployed within the enterprise, both in
third-party security products such as proxies and endpoint agents, and within existing
browser software such as Google Chrome. The Browser Isolation security model depends
critically on the data transfer format between an untrusted component responsible for
processing risky web content and a trusted component responsible for transmitting
information to the user’s endpoint. The gold standard in this area is a technique known as
‘pixel pushing’, whereby risky web content is transformed into raw pixels. Beyond today’s
implementations, browser isolation may likely play a broader role in future, in keeping
with the role that equivalent technologies already play within the military and intelligence
sectors, as referenced by a recent White House memorandum.

KEYWORDS: browser isolation, web security, privileged access workstations, pixel
pushing, phishing, ransomware, cross-domain solutions

INTRODUCTION
In the late 1990s, Microsoft’s ActiveX
technology1 invited arbitrary websites to
send code to be run natively on Microsoft
Windows® endpoints. The operating
system’s (OS) security model was intended

to ensure that malicious ActiveX objects
could not gain access to sensitive data and
software: in practice, of course, inadequacies
and vulnerabilities in the OS meant that
the scope for malicious attack was high
(as predicted by observers at the time2).

Harrison

142 Cyber Security: A Peer-Reviewed Journal Vol. 6, 2 141–147 © Henry Stewart Publications 2398-5100 (2022)

ActiveX did not long prosper as an Internet
technology.

The sandboxing techniques used by
modern web browsers are far superior to
the ActiveX security model.3 And yet, as
probably the single most complicated piece
of software installed on modern corporate
endpoint devices, it is no surprise that
browsers also exhibit vulnerabilities of
varying criticality. See for example CVE-
2020-65724 for a vulnerability that permitted
an attacker to escape a Chrome sandbox and
which was reported exploited in the wild.

Within the enterprise, the web browser is
the user interface of choice for almost every
business activity, providing access and control
over critical data and services. But as well as
providing access to trusted systems and cloud
services, the browser continues its original
role as the window onto the World Wide
Web. In most enterprises today, the user can
invite arbitrary websites to send complex
content for parsing and execution on their
endpoint. In most cases, neither the user nor
the enterprise has any real knowledge about
the website owner or about their security
practices: they may have malicious intent,
or the site may be used or compromised by
other parties who have malicious intent.

This is hardly news. A thriving web
security industry5 exists to try and counter
the risk that this browser usage presents.
Identification and blocking of malicious
uniform resource locators (URLs),
on-the-fly identification of malicious content
and OS-level endpoint protection tools all
aim to prevent, detect or mitigate potential
website-launched attacks. And for the
most part, over the past decades, they have
succeeded.

For the most part — but of course, not
wholly. Sophisticated web-based attacks
remain a significant threat from those
whose intent may be to install ransomware,
to conduct espionage or even to carry
out disruption and destruction. For some
organisations, the residual risk even in the
presence of proxies, threat intelligence and

endpoint protection agents remains too high
— at least for those users whose endpoints
are used to access the most critical systems
and data.

The archetypal example is the systems
administrator with elevated privileges. If
their endpoint were to be compromised,
the attacker gets the keys to the kingdom:
immediate access to all data and all systems.
Best practice has long advised that endpoints
with privileged access should not have
broad-based access to the World Wide Web.
Yet anyone who has observed the work of
systems administrators will have noticed that
broad-based web access is central to their
work: Google is probably the single most
important tool for today’s sysadmin who
must hunt down the nuggets of information
that will help them identify the fix or
workaround that they need. So how can best
practice be achieved?

The historic answer has been the use of
jump boxes,6 requiring systems administrators
to remotely access a locked-down, non-web-
connected virtual desktop in order to carry
out privileged tasks. This can provide a bump
in the road; but with techniques such as
man-in-the-browser, the bare fact is that —
with a little effort — anything the legitimate
endpoint user can do, the attacker can too.
That includes the use of a jump box.

What are the alternatives? The simplest is,
of course, to require such users to use two
physical devices: one to perform privileged
tasks, and the other to access potentially
risky web-based content.7 Apart from
the inevitable user push-back this entails,
there are two real practical issues with this
approach. First, in many cases the result of a
Google search will be to unearth a particular
set of potentially complex commands
that need to be tried. For practicality, it is
important that the user can copy and paste
these commands from the website onto the
command line. Secondly, in other cases,
rather than Googling, the user needs to
follow a link provided from a trusted source:
they need the ability to click through, rather

Browser isolation as an enterprise security control

© Henry Stewart Publications 2398-5100 (2022) Vol. 6, 2 141–147 Cyber Security: A Peer-Reviewed Journal 143

than having to retype a potentially long and
complicated URL.

The promise of browser isolation is to
provide a better solution — a way to access
potentially risky websites from a highly
sensitive endpoint device that enables
common workflows such as click-through
and copy-and-paste, while providing an
equivalent level of protection to the use of a
physically separate device.

One might reasonably ask: is this not
exactly what all web security vendors have
been promising for over 20 years? What
makes browser isolation different from
the myriad security tools that have been
developed and promoted over that period?
These are questions which are not only
reasonable but essential: security professionals
have learned time after time that glossy
marketing promises rarely translate to robust
risk mitigation. We must unpick the promise
and understand what lies behind it.

At the heart of the browser isolation
promise is a web security model that does
not rely on detection. Rather than seek to
detect malicious content, the isolation model
assumes that content may be malicious unless
there is good reason to believe otherwise.
With a detection model (the default for
historic web security tools), the response to
detection of malicious content is simply to
block it. This is not a useful solution if the
vast majority of content is to be assumed
potentially malicious, and it is precisely the
role of browser Isolation to provide users
with safe access to this potentially malicious
content.

This is of course the same approach that
browsers themselves have incorporated since
those far-off times of ActiveX. Website
content is sandboxed in an effort to ensure
that, even if it is bad, the attacker cannot
gain access to other tabs within the browser,
or to the OS. But browsers are just software
applications like any other, and it is precisely
the presence of vulnerabilities in this sort of
sandboxing technique that gives rise to the
promise of browser isolation. That promise

must then not only be to provide safe access
to potentially malicious content, but to
do this with a substantially higher level of
security than is provided by the browser
software itself.

The first part of the browser isolation
solution, then, is to parse and execute the
potentially malicious content on a different
physical machine. This is a well-understood
concept: indeed, it is essentially time-
honoured remote desktop under a new guise.
If we leave it at that, however, we ignore the
fact that remote desktop technologies were
not developed primarily as security controls
— their introduction and development have
been driven predominantly by productivity
requirements.

If, instead, we look at browser isolation
(or remote desktop) technologies from first
principles, we see that their primary job
is transformation: they receive, from some
remote system, data that causes them to
create some sequence of screen images and
then send, to the user’s physical endpoint,
data that causes that endpoint to create some
sequence of screen images (see Figure 1).

One seemingly absurd approach is simply
to send the same data to the endpoint that
they receive from the remote system: yet in
some cases, precisely this approach is used.
For example, for performance reasons, most
remote desktop systems include a ‘media
acceleration’ option whereby video data is
not rendered and then re-encoded, but rather
‘passed through’ in its native form (see for
example ‘Multimedia Redirection for Azure
Virtual Desktop’8). A ‘pass through’ approach
is not useful for a browser isolation platform;
clearly, some element of transformation must
be applied to the data.

The fundamental requirement is this: the
platform must ensure that the data delivered
to the physical endpoint is safe even if the
data that is received from the remote system
is not. Furthermore, we must assume that the
software system that processes the data from
the remote system — for example, the data
received from a remote website — has been

Harrison

144 Cyber Security: A Peer-Reviewed Journal Vol. 6, 2 141–147 © Henry Stewart Publications 2398-5100 (2022)

compromised by malware. If we believed
we had techniques that could prevent this,
we would of course simply deploy those
techniques to our users’ endpoints and avoid
the need for browser isolation altogether. The
browser isolation platform must therefore
consist of at least two separate systems: system
A, which processes remote data (and must
at all times be assumed compromised by
malware); and a separate system B, which
must remain trusted at all times, and which
will send a safe data stream to the user’s
endpoint. Inevitably, of course, there exist
browser isolation implementations that do
not contain a separate system A and system B,
and where the data stream sent to the user’s
endpoint is generated by system A: but since
system A must be considered compromised,
this can lead to the generation of a malicious
data stream for delivery to the user’s endpoint.
We will ignore such flawed architectures.

The focus must therefore be on the
format of the data that is transferred from

the first (assumed compromised) system
A to the second (unimpeachably trusted)
system (see Figure 2). This data format must
provide three things. First, it must not be
possible to use this data format as a vector for
compromising system B. Secondly, it must
allow the second system to generate a data
stream which itself cannot possibly be used to
compromise the user’s endpoint. And thirdly,
it must faithfully represent the visual output
of system A (for example, a web page).

The gold standard for this transfer format
is raw pixels — an approach commonly
known as ‘pixel pushing’. With pixel
pushing, system A delivers to system B
merely a stream of pixels representing its
visual output. Raw pixels present a unique
data format for visual data because there is no
such thing as invalid pixel data. A 1080p raw
24-bit RGB bitmap (for example) is a buffer
in memory containing 3x1920x1080 bytes:
any data written into that memory buffer
represents a valid image and can be displayed

Figure 1: First principles of browser isolation technologies

Figure 2: Transfer of data from compromised system to trusted system

Browser isolation as an enterprise security control

© Henry Stewart Publications 2398-5100 (2022) Vol. 6, 2 141–147 Cyber Security: A Peer-Reviewed Journal 145

onto a screen with a simple memory copy
(or at worst, a trivial algorithm for colour
space conversion). This is quite unlike
other visual formats — jpeg, pdf, html —
which require sophisticated parsing that
may potentially contain vulnerabilities that
could be exploited by a carefully crafted data
stream. We should note briefly that exactly
the same argument can be used for sound
representation as raw pulse-code modulation
[PCM] audio:9 again, absolutely any data
in the sound buffer constitutes a valid (if
potentially unpleasant) sound.

The challenge with pixel pushing is the
sheer volume of data generated. At 30 frames
per second (for example) a 1080p red, green,
blue (RGB) screen image will generate
3x1920x1080x30 bytes — or a data rate of
1.5Gbit/s. It is clearly not feasible to deliver
that 1.5Gbit/s to the user’s endpoint without
either very substantial data compression or
excessive network utilisation. The good
news is that suitable compression algorithms
are well-known: this is a video compression
problem, and technologies like H264 are
well-established. The bad news is that cost-
effective implementation of these techniques
requires dedicated hardware, just as the
compression of ubiquitous mobile phone
videos requires dedicated H264 hardware
within the mobile phone chipset.

For those seeking to deliver browser
isolation platforms on commodity clouds
using software only, the cost of video
compression is excessive. That means
an alternative to pixel pushing needs
to be found — a variety of techniques
collectively known as ‘transcoding’.10 Under
a transcoding approach, some other data
format is sent by system A to system B, this
data format being inevitably more complex
than raw pixels in order to reduce the bitrate
and hence the need for data compression.
Many such ‘transcoding’ data formats are
proprietary and unpublished, and hence it
is hard to judge the extent to which they
might be used as a vector to compromise
system B, or alternatively to ‘smuggle’ an

attack through system B in order to directly
compromise the user’s endpoint. A well-
known ‘transcoding’ format — originating
from remote desktop technologies — is
remote desktop protocol (RDP). Certainly
this is a format which has historically
given rise to multiple vulnerabilities, with
associated exploits — for example, a 2022
Remote Code Execution Vulnerability.11

Use of a robust browser isolation
technology can allow users to interact with
even the riskiest websites from even the
most sensitive endpoints. The click-through
workflow is easily solved: just as the remote
system (System A) must be instructed about
mouse movements and key presses in order
to enable scrolling and interaction, so too the
remote system can be instructed what URL
to browse. The copy-and-paste workflow
requires more work, because this is not
simply the transfer of pixels but the transfer
of other data to be inserted into a clipboard.
Suitable content security techniques need to
be deployed, integrated with the browsing
user experience. It may be sensible to restrict
the types of data handled to simple formats
that can be rapidly sanitised or verified,
since more complex data types may require
content security techniques which take
longer (for example, a sandbox) and which
will not integrate well with a copy-and-paste
workflow. Further workflow integrations (for
example, with potentially longer-duration
content security for file transfer) can be
added.

Of course, while they are in all cases
probably the riskiest users, it is not just
systems administrators who are at risk of
web-based attacks. Many organisations are
particularly concerned about risks arising
from phishing attacks against a wide range
of users, with e-mails containing links to
malicious websites that might seek to install
ransomware or other forms of malware. And
it is not only systems administrators who
have access to critical systems and data: a
wide range of roles in most organisations
involve working with at least one form of

Harrison

146 Cyber Security: A Peer-Reviewed Journal Vol. 6, 2 141–147 © Henry Stewart Publications 2398-5100 (2022)

sensitive information. Browser isolation can
naturally be deployed as a control for this
broader user base, either using the same
model as described for systems administrators
(definition of an allow list of trusted sites,
with all others accessed using browser
isolation) or by defining other business rules
for discriminating between ‘more trusted’
links that can be accessed natively and ‘less
trusted’ links that must be accessed using
browser isolation. The largest UK retail
bank, Lloyds Banking Group, provides a case
study for such a deployment.12

In either case, the deployment requires
some line to be drawn between those parts
of the Web which are more trusted and
those which are less trusted. One might be
drawn to ask: why not use browser isolation
to access all links? For most organisations,
such an approach would make little sense,
because the browser provides the interface
to highly trusted cloud services that provide
critical business services and are used to
hold and access sensitive confidential data.
The function of browser isolation is to
provide an extremely strong barrier between
those things that are accessed using browser
isolation and those that are not: the barriers
between different things accessed using
browser isolation (for example, between tabs)
will typically be weaker, relying on the same
sorts of isolation technology (for example,
sandboxes and containers) which are already
present in the native desktop browser. So
those highly trusted cloud services — with
their sensitive confidential data — should
reside on one side of that strong barrier, and
arbitrary unknown websites on the other, in
order to prevent attackers using the latter as a
basis for getting access to the former.

A more complex question, however, is to
ask whether one can really categorise all of
the digital world into only two categories:
more trusted, and less trusted. Surely there
is a vast spectrum of digital content and
services meeting a wide variety of trust
criteria? How can this reality fit with a
simplistic binary division? In principle, it

might be attractive to work with an infinite
spectrum of trust, but this runs up against
both technological and human boundaries.

First, in many cases it is not desirable
to maintain very strong isolation between
different websites: to give one example,
while the use of third-party cookies is not
always popular, it is a critical component of
delivering the contemporary web experience.
Strong isolation breaks that mechanism.

Secondly, the concept of trust is inherently
human: users need to understand what trust
environment they are working in. Is this a
trusted site where I can safely enter sensitive
customer data? Is this a site on whose
information I can reasonably base business
decisions? Experience suggests that humans
are not good at dealing with infinitely
subtle gradations of trust: it is necessary to
work with broad brushstrokes and a limited
number of categories of trust.

That experience has been gained
principally in areas that have long depended
on strong isolation — in particular, military
and intelligence organisations. Where today’s
commercial and civilian deployments of
browser isolation might revolve around
‘more trusted’ and ‘less trusted’, the world
of national security has long worked with a
broader set of trust boundaries. A member of
US military personnel might, for example,
work routinely with US Secret, Five Eyes
Secret, NATO Secret, Unclassified and ‘high
threat’ environments, each representing a
different trust boundary. (Similarly, their UK
counterpart would work with UK Secret,
Five Eyes Secret, NATO Secret, etc.) Of
course, within NATO Secret there are fine
gradations between systems, most likely
with trust levels that vary over time with the
geopolitical situation and levels of third-party
capability. But from both a technological and
human perspective, defining broad-based
categories provides a framework for both
sensible system implementation and practical
human comprehension and decision making.

Browser isolation technology is routinely
deployed within these governmental

Browser isolation as an enterprise security control

© Henry Stewart Publications 2398-5100 (2022) Vol. 6, 2 141–147 Cyber Security: A Peer-Reviewed Journal 147

environments, not only to provide access
to the World Wide Web but to provide
access, for example, from UK Secret to
NATO Secret. In this context, however,
different terminology is typically used:
rather than browser isolation, governmental
users typically talk about ‘cross-domain
solutions’13,14 or ‘browse down’.15 That
terminology is often poorly adapted
to comprehension in the wider world,
as with the section on cross-domain
solutions in the US White House’s January
2022 ‘Memorandum on Improving the
Cybersecurity of National Security,
Department of Defense, and Intelligence
Community Systems’.16 Nonetheless, one
important area of what that world calls cross-
domain solutions is precisely the sort of
browser isolation technology that has been
described in this paper.

Perhaps over time commercial and
civilian organisations will evolve a similar
approach to trust categories, with browser
isolation technology deployed in a more
subtle form than today’s ‘more trusted’ versus
‘less trusted’ approach. But while we can
accept that this may be a crude instrument,
it already represents a significant change for
enterprises which have historically taken an
approach of ‘default trusted unless found to
be malicious’.

References
1. Wikipedia, ‘ActiveX’, available at https://

en.wikipedia.org/wiki/ActiveX (accessed 1st August,
2022).

2. Garfinkel, S. (November 1996), ‘Will ActiveX
Threaten National Security?’, Wired, available at
https://www.wired.com/1996/11/will-activex-
threaten-national-security/ (accessed 1st August,
2022).

3. Sylvain, N. (October 2008), ‘A new approach to
browser security: The Google Chrome Sandbox’,
Chromium, available at https://blog.chromium.
org/2008/10/new-approach-to-browser-security-
google.html (accessed 1st August, 2022).

4. Hawkes, B. (April 2020), ‘CVE-2020-6572: Chrome
MediaCodecAudioDecoder Sandbox Escape’, 0-Days
In The Wild, available at https://googleprojectzero.
github.io/0days-in-the-wild//0day-RCAs/2020/
CVE-2020-6572.html (accessed 1st August, 2022).

5. Future Market Insights, ‘Corporate Web Security
Market Overview (2022–2032)’, available at https://
www.futuremarketinsights.com/reports/corporate-
web-security-market (accessed 1st August, 2022).

6. Wikipedia, ‘Jump server’, available at https://
en.wikipedia.org/wiki/Jump_server (accessed 1st
August, 2022).

7. Microsoft (January 2022), ‘Securing devices as part of
the privileged access story’, available at https://docs.
microsoft.com/en-us/security/compass/privileged-
access-devices (accessed 1st August, 2022).

8. Microsoft, ‘Multimedia redirection for Azure
Virtual Desktop (preview)’, available at https://
docs.microsoft.com/en-us/azure/virtual-desktop/
multimedia-redirection (accessed 1st August, 2022).

9. Wikipedia, ‘Pulse-code modulation’, available
at https://en.wikipedia.org/wiki/Pulse-code_
modulation (accessed 1st August, 2022).

10. Clyde, R. (November 2022), ‘Non-Porous Web
Isolation’, LinkedIn, available at https://www.
linkedin.com/pulse/non-porous-web-isolation-rob-
clyde/ (accessed 1st August, 2022).

11. CVE, ‘CVE-2022-23285’, available at
https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2022-23285 (accessed 1st August,
2022).

12. Garrison, ‘Lloyds Banking Group’, available at
https://www.garrison.com/lloyds-banking-group
(accessed 1st August, 2022).

13. National Cyber Security Centre (January 2022),
‘Security principles for cross domain solutions’,
available at https://www.ncsc.gov.uk/collection/
cross-domain-solutions (accessed 1st August, 2022).

14. Australian Cyber Security Centre (October 2021),
‘Fundamentals of Cross Domain Solutions’, available
at https://www.cyber.gov.au/acsc/view-all-content/
publications/fundamentals-cross-domain-solutions
(accessed 1st August, 2022).

15. National Cyber Security Centre (May 2019),
‘Security architecture anti-patterns’, available at
https://www.ncsc.gov.uk/whitepaper/security-
architecture-anti-patterns#section_3 (accessed 1st
August, 2022).

16. The White House (January 2022), ‘Memorandum on
Improving the Cybersecurity of National Security,
Department of Defense, and Intelligence Community
Systems’, available at https://www.whitehouse.gov/
briefing-room/presidential-actions/2022/01/19/
memorandum-on-improving-the-cybersecurity-
of-national-security-department-of-defense-and-
intelligence-community-systems/ (accessed 1st
August, 2022).

	Browser isolation as an enterprise security control
	introduction
	References

